万象城AWC
博学笃行 止于至善
导航菜单
王敏
发布时间: 2025-08-27 12:56 作者: 点击: 71

王敏

民族:汉族 性别:女

出生年月:1995年5月

Email: 202536@cumtb.edu.cn

一、个人履历:

2025.07至今 万象城AWC,万象城AWC

2023.07-2025.07 中国工程物理研究院北京计算科学研究中心,博士后

2022.01-2023.01 新加坡南洋理工大学,博士联合培养

2017.09-2023.06 北京工业大学,理学博士

2013.09-2017.06 山东师范大学,理学学士

二、研究方向

弱奇异积分方程、相场方程等的高效数值解法

三、科研项目:

1. 国家资助博士后研究人员计划:Gierer-Meinhardt 系统的保结构谱方法及其在图灵斑图动力学中的应用(No. GZC20230214),主持

2. 博士后科学基金第75批面上项目:弱奇异积分微分方程的快速非多项式谱方法及其迭代超收敛算法(No. 2024M750162),主持

3. 国家自然科学基金面上项目:时域散射问题基于透射边界条件的高效数值方法(No. 12171017),参与

4. 国家自然科学基金面上项目:积分微分方程的高效数值方法研究(No. 11971047),参与

四、学术论文:

1. M. Wang, L.L Wang. Numerical Study of The Gierer-Meinhardt System Using An Exponential Transformation, Applied Numerical Mathematics, to appear.

2. M. Wang, Z. Zhang. Superconvergence Points of Several Polynomial and Nonpolynomial Hermite Spectral Interpolations, CSIAM Transactions on Applied Mathematics, received.

3. M. Wang, Q. Huang, C. Wang. A Second Order Accurate Scalar Auxiliary Variable (SAV) Numerical Method for the Square Phase Field Crystal Equation, Journal of Scientific Computing, 2021, 88(2): 1-36.

4. M. Wang, Z. Zhang. Mapped Hermite functions and their applications to two dimensional weakly singular Fredholm–Hammerstein integral equations, Journal of Computational and Applied Mathematics, 2025, 116585.

5. M. Wang. Multistep collocation method for Fredholm integral equations of the second kind, Applied Mathematics and Computation, 2022, 420: 126870.

6. Q. Huang, M. Wang. Generalized log orthogonal functions spectral collocation method for two dimensional weakly singular Volterra integral equations of the second kind, Numerical Methods For Partial Differential Equations, 2024, 40(5): 1-24.

7. Q. Huang, M. Wang. Nonpolynomial Jacobi Spectral-Collocation Method for Weakly Singular Fredholm Integral Equations of the Second Kind, Advances in Applied Mathematics and Mechanics, 2024, 16(4): 927-951.

8. Q. Huang, M. Wang.Superconvergence of interpolated collocation solutions for weakly singular Volterra integral equations of the second kind, Computational and Applied Mathematics, 2021, 40(3): 1-18.

9. F. Xu, Q. Huang, M. Wang, Hongkun Ma. A novel adaptive finite element method for the ground state solution of Bose-Einstein condensates, Applied Mathematics and Computation, 2020, 385.



                                                                                                                        Min WANG

Name: Min WANG

Title: Lecturer

Email: 202536@cumtb.edu.cn

Research Field: Numerical methods for weakly singular Integral equations and phase field models.


  • 附件【图片1.png】已下载

下一篇: 吴斯迪